2D Structure

3D Structure

Thymol


Properties
PID PID00010
Mol. Weight 150.221 g/mol
LogP 3.43
Water solubility 900 mg/L at 20 °C
Hydrogen Bond Donor 1
Hydrogen Bond Acceptor 1
Rotatable Bonds 1
XLogP3 3.3

Thymol

Identifiers
Formula C10H14O
PubChem CID 6989
FEMA 3066
Flavor Profile Pungent, Caustic,Sweet, Medicinal, Spicy, Aromatic Taste; Odor Of Thyme, A Spicy-Herbal, Slightly Medicinal Odor Reminiscent Of Thyme, Aromatic Odor.
Smiles Cc1ccc(C(C)C)c(O)c1
InChl Key MGSRCZKZVOBKFT-UHFFFAOYSA-N
InChl InChI=1S/C10H14O/c1-7(2)9-5-4-8(3)6-10(9)11/h4-7,11H,1-3H3
CAS Registry Number 89-83-8
IUPAC Systematic Name 5-methyl-2-propan-2-ylphenol

Organ Location Map/System Distribution of Pungent Flavor Compounds’ Targets


Note: Known Targets (Gene) from 6952 literatures, DrugBank (http://www.drugbank.ca/), STITCH (http://stitch.embl.de/), ChEMBL (https://www.ebi.ac.uk/chembl/), Therapeutic Target Database (http://bidd.nus.edu.sg/group/ttd/), and Comparative Toxicogenomics Database (CTD, http://ctdbase.org/)


Related Pungent TCM

English Name Pinyin Name (Chinese Name) Latin Name Properties in TCM merdians View Graph
Galanga ResurrectionlilyShan Nai (山柰)Kaempferiae RhizomaWarm, Pungent,StomachView Graph
Chuanxiong (Wallich Ligusticum) Equivalent plantChuan Xiong (川芎)Ligusticum chuanxiong HortWarm, PungentLung, Spleen, StomachView Graph
Fresh Common GingerSheng Jiang (生姜)Zingiber Rhizoma RecensWarm, PungentLung, Spleen, StomachView Graph
Lily Magnolia Buds Equivalent plant: Magnolia liliXin Yi (辛夷)Magnoliae FlosWarm, PungentLung, Spleen, StomachView Graph
Fortune Eupatorium Equivalent plant: Eupatorium fPei Lan(佩兰)Eupatorii HerbaNeural, PungentLung,Spleen,StomachView Graph
Apple MintYu Xian Cao(鱼腥草)Houttuyniae HerbaCold, PungentLungView Graph
Black PepperHu Jiao (胡椒)Piperis FructusHot,PungentLarge Intestine, StomachView Graph
Chinese ClematisWei Ling Xian (威灵仙)Clematidis Radix Et RhizomaWarm, Pungent, SaltyBladderView Graph
Haichow ElsholtziaXiang Ru (香薷)Moslae HerbaMinor Warm,PungentLung, Spleen, StomachView Graph
Cassiabarktree TwigGui Zhi (桂枝)Cinnamomi RamulusWarm, Pungent, SweetLung, Bladder, HeartView Graph
Lesser GalangalGao Liang Jiang (高良姜)Alpiniae Officinarum RhizomaHot,PungentLarge Intestine, StomachView Graph
Centipeda minimaE Bu Shi Cao(鹅不食草)Small CentipedaWarm,PungentSpleen, Stomach, Kidney, LungView Graph
Wild MintBo He (薄荷)Menthae Haplocalycis HerbaCool, PungentLiver, LungView Graph
Barbed SkullcapBan Zhi Lian(半枝莲)Scutellariae Barbatae HerbaCold, Bitter, PungentBladder, Spleen, Liver,StomachView Graph
Chinese Thorowax Equivalent plant: Bupleurum scorzChai Hu(柴胡)Bupleuri RadixMinor cold, Pungent, BitterLiver, Gallbladder, LungView Graph
Chinese Ephedra Equivalent plant: Ephedra equisetiMa Huang (麻黄)Ephedrae HerbaWarm, Pungent, Slightly BitterLung, BladderView Graph
Daucus carotaNan He Shi(南鹤虱)Wild Carrot FruitNeural, Bitter, PungentLungView Graph
Grassleaved Sweetflag Equivalent plant: Acorus grShi Chang Pu(石菖蒲)Acori Tatarinowii RhizomaWarm, Bitter, PungentSpleen, Large Intestine, Stomach, Gallbladder, Three EndView Graph
Thuja orientalisCe Bai Ye(侧柏叶)Chinese Arborvitae LeafMinor cold,Bitter,PunkeryLung,Large Intestine,LiverView Graph

Pharmacological action

Thymol (= 5meil-2-isopropil-1-fenol) is a volatile, refringent monoterpenoid, found in plants of the Lamiacea and Apiacea families.

Thymol is a naturally occurring phenolic monoterpene known for its anti-microbial and anti-oxidant properties. It is used in dental practice and in

anaesthetic halothane preparations.

Thymol show a broad range of pharmacological properties: antioxidant, acaricidal, acaricide, ovicide, antibacterial, antifungal, antifungal, antimicrobial,

anticonvulsant, acaricidal, fungicidal, gastroprotective actions on the acute and chronic ulceras larvicides, prevent acute lung injury, protection against

diabetic nephropathy, antiepileptogenic, anti microbial, anti inflammatory activity, etc.



Note: Click anywhere in the blank, you can drag the whole dynamic diagram. Click on a node, you can drag his location to see it more clearly. The blue circle represents pharmacology, toxicology, or daily use. Orange hexagon represents the pungent compounds.

References

1. Saravanan S, Pari L. Protective effect of thymol on high fat diet induced diabetic nephropathy in C57BL/6J mice[J]. Chemico-biological interactions, 2016, 245: 1-11.

2. Jordt S E, Bautista D M, Chuang H, et al. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1[J]. Nature, 2004, 427(6971): 260.

3. Bandell M, Story G M, Hwang S W, et al. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin[J]. Neuron, 2004, 41(6): 849-857.

4. Bautista D M, Jordt S E, Nikai T, et al. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents[J]. Cell, 2006, 124(6): 1269-1282.

5. Macpherson L J, Xiao B, Kwan K Y, et al. An ion channel essential for sensing chemical damage[J]. Journal of Neuroscience, 2007, 27(42): 11412-11415.

6. Takayama Y, Furue H, Tominaga M. 4-isopropylcyclohexanol has potential analgesic effects through the inhibition of anoctamin 1, TRPV1 and TRPA1 channel activities[J]. Scientific Reports, 2017, 7: 43132.

7. Lam P Y, Mendu S K, Mills R W, et al. A high-conductance chemo-optogenetic system based on the vertebrate channel Trpa1b[J]. Scientific reports, 2017, 7(1): 11839.

8. Tashima K, Yoshikubo M, Raimura M, et al. Allyl Isothiocyanate, a Dietary Activator of TRPA1, Increases Gastric Mucosal Blood Flow Through TRPV1-Expressing and Non-Expressing Sensory Nerves in Rats[J]. Gastroenterology, 2011, 140(5): S-471.

9. Yokoyama T1, Ohbuchi T, Saito T, Sudo Y, Fujihara H, Minami K, Nagatomo T, Uezono Y, Ueta Y. Allyl isothiocyanates and cinnamaldehyde potentiate miniature excitatory postsynaptic inputs in the supraoptic nucleus in rats[J]. Eur J Pharmacol. 2011 Mar 25;655(1-3):31-7

10. Saito S, Hamanaka G, Kawai N, et al. Characterization of TRPA channels in the starfish Patiria pectinifera: involvement of thermally activated TRPA1 in thermotaxis in marine planktonic larvae[J]. Scientific reports, 2017, 7(1): 2173.

11. Brozmanova M, Mazurova L, Ru F, et al. Comparison of TRPA1-versus TRPV1-mediated cough in guinea pigs[J]. European journal of pharmacology, 2012, 689(1-3): 211-218.

12. Moparthi L, Kichko T I, Eberhardt M, et al. Human TRPA1 is a heat sensor displaying intrinsic U-shaped thermosensitivity[J]. Scientific reports, 2016, 6: 28763.

13. Andrade E L, Luiz A P, Ferreira J, et al. Pronociceptive response elicited by TRPA1 receptor activation in mice[J]. Neuroscience, 2008, 152(2): 511-520.

14. Doihara H, Nozawa K, Kawabata-Shoda E, et al. Molecular cloning and characterization of dog TRPA1 and AITC stimulate the gastrointestinal motility through TRPA1 in conscious dogs[J]. European journal of pharmacology, 2009, 617(1-3): 124-129.

15. Wang S Y, Chen C T. Effect of allyl isothiocyanate on antioxidant enzyme activities, flavonoids and post-harvest fruit quality of blueberries (Vaccinium corymbosum L., cv. Duke)[J]. Food chemistry, 2010, 122(4): 1153-1158.

16. Wang S Y, Chen C T, Yin J J. Effect of allyl isothiocyanate on antioxidants and fruit decay of blueberries[J]. Food chemistry, 2010, 120(1): 199-204.

17. Matsuda H, Ochi M, Nagatomo A, et al. Effects of allyl isothiocyanate from horseradish on several experimental gastric lesions in rats[J]. European journal of pharmacology, 2007, 561(1-3): 172-181.

18. Manyes L, Luciano F B, Manes J, et al. In vitro antifungal activity of allyl isothiocyanate (AITC) against Aspergillus parasiticus and Penicillium expansum and evaluation of the AITC estimated daily intake[J]. Food and Chemical Toxicology, 2015, 83: 293-299.

19. Tashima K, Ishikawa E, Seki Y, et al. Sa2052 Contractile Effect of TRPA1 Activation With Allyl-Isothiocyanate in Isolated Mouse Distal Colon: Role of the Tachykinin Receptors NK1/NK2 and 5-HT Receptors[J]. Gastroenterology, 2013, 144(5): S-370.

20. Tashima K, Shimada H, Noma Y, et al. Su1538 Contractile Effect of TRPA1 Activation With Allyl-Isothiocyanate in Isolated Mouse Distal Colon: Role of TRPA1-Expressing Neurons and Endogenous Prostaglandins[J]. Gastroenterology, 2016, 150(4): S520-S521.

21. Tashima K, Yamaura S, Hashimoto K, et al. Allyl Isothiocyanate, a Pungent Ingredient of Wasabi, Induces Gastric Low-Grade Inflammation in Rats to Lead to the Impaired Gastric Motility; Involvement of Prostaglandin, Capsaicin-Sensitive Sensory Neurons, and Nitric Oxide[J]. Gastroenterology, 2017, 152(5): S563.

22. Daemon, Erik, et al. "Evaluation of the acaricide activity of thymol on engorged and unengorged larvae of Rhipicephalus sanguineus (Latreille, 1808)(Acari: Ixodidae)." Parasitology research 105.2 (2009): 495.

23. da Silveira Novelino, Adriana Maria, Erik Daemon, and Geraldo Luiz Gon?alves Soares. "Evaluation of the acaricide effect of thymol, menthol, salicylic acid, and methyl salicylate on Boophilus microplus (Canestrini 1887)(Acari: Ixodidae) larvae." Parasitology research 101.3 (2007): 809.

24. LABRUNA, M. B. Biologia-ecologia de Rhipicephalus sanguineus (Acari: ixodidae). Rev Bras Parasitol Vet, 2004, 13.S1: 123-124.

25. de Oliveira Monteiro, Caio Mrcio, et al. Acaricidal efficacy of thymol on engorged nymphs and females of Rhipicephalus sanguineus (Latreille, 1808)(Acari: Ixodidae). Parasitology research, 2009, 105.4: 1093.

26. Daemon, Erik, et al. Evaluation of the acaricide activity of thymol on engorged and unengorged larvae of Rhipicephalus sanguineus (Latreille, 1808)(Acari: Ixodidae). Parasitology research, 2009, 105.2: 495.

27. Govindarajan M, Sivakumar R, Rajeswary M, et al. Mosquito larvicidal activity of thymol from essential oil of Coleus aromaticus Benth. against Culex tritaeniorhynchus, Aedes albopictus, and Anopheles subpictus (Diptera: Culicidae)[J]. Parasitology research, 2013, 112(11): 3713-3721.

28. Macpherson L J, Geierstanger B H, Viswanath V, et al. The pungency of garlic: activation of TRPA1 and TRPV1 in response to allicin[J]. Current Biology, 2005, 15(10): 929-934.

29. Bautista D M, Movahed P, Hinman A, et al. Pungent products from garlic activate the sensory ion channel TRPA1[J]. Proceedings of the National Academy of Sciences, 2005, 102(34): 12248-12252.

30. Everaerts W, Gees M, Alpizar Y A, et al. The capsaicin receptor TRPV1 is a crucial mediator of the noxious effects of mustard oil[J]. Current Biology, 2011, 21(4): 316-321.

31. Vandewauw I, De Clercq K, Mulier M, et al. A TRP channel trio mediates acute noxious heat sensing[J]. Nature, 2018, 555(7698): 662.

32. Chung G, Im S T, Kim Y H, et al. Activation of transient receptor potential ankyrin 1 by eugenol[J]. Neuroscience, 2014, 261: 153-160.

33. Allyl Isothiocyanate, a Dietary Activator of TRPA1, Increases Gastric Mucosal Blood Flow Through TRPV1Expressing and NonExpressing Sensory Nerves in Rats. Jan. 2011, Gastroenterology 140(5)

34. Basbaum A I, Bautista D M, Scherrer G, et al. Cellular and molecular mechanisms of pain[J]. Cell, 2009, 139(2): 267-284.

35. Bessac B F, Jordt S E. Breathtaking TRP channels: TRPA1 and TRPV1 in airway chemosensation and reflex control[J]. Physiology, 2008, 23(6): 360-370.

36. Eisner, T. in Chemical Ecology (eds Sondheimer, E. & Simeone, J. B.) 157C218 (Academic, 1970).

37. Kang K, Pulver S R, Panzano V C, et al. Analysis of Drosophila TRPA1 reveals an ancient origin for human chemical nociception[J]. Nature, 2010, 464(7288): 597.

38. Philippaert K, Pironet A, Mesuere M, et al. Steviol glycosides enhance pancreatic beta-cell function and taste sensation by potentiation of TRPM5 channel activity[J]. Nature communications, 2017, 8: 14733.

39. Quallo T, Vastani N, Horridge E, et al. TRPM8 is a neuronal osmosensor that regulates eye blinking in mice[J]. Nature communications, 2015, 6: 7150.

40. Khan S T, Khan M, Ahmad J, et al. Thymol and carvacrol induce autolysis, stress, growth inhibition and reduce the biofilm formation by Streptococcus mutans[J]. AMB Express, 2017, 7(1): 49.

41. Pohlit A M, Rezende A R, Baldin E L L, et al. Plant extracts, isolated phytochemicals, and plant-derived agents which are lethal to arthropod vectors of human tropical diseasesCa review[J]. Planta Medica, 2011, 77(06): 618-630.

42. Sedy K A, Koschier E H. Bioactivity of carvacrol and thymol against Frankliniella occidentalis and Thrips tabaci[J]. Journal of applied entomology, 2003, 127(6): 313-316.

43. Delmonte C, Cruz P B, Zeringta V, et al. Evaluation of the acaricidal activity of thymol incorporated in two formulations for topical use against immature stages of Rhipicephalus sanguineus sensu lato (Latreille, 1806)(Acari: Ixodidae)[J]. Parasitology research, 2017, 116(11): 2957-2964.

44. Daemon E, de Oliveira Monteiro C M, dos Santos Rosa L, et al. Evaluation of the acaricide activity of thymol on engorged and unengorged larvae of Rhipicephalus sanguineus (Latreille, 1808)(Acari: Ixodidae)[J]. Parasitology research, 2009, 105(2): 495.

45. Daemon E, Maturano R, de Oliveira Monteiro C M, et al. Acaricidal activity of hydroethanolic formulations of thymol against Rhipicephalus sanguineus (Acari: Ixodidae) and Dermacentor nitens (Acari: Ixodidae) larvae[J]. Veterinary parasitology, 2012, 186(3-4): 542-545.

46. de Oliveira Monteiro C M, Daemon E, Clemente M A, et al. Acaricidal efficacy of thymol on engorged nymphs and females of Rhipicephalus sanguineus (Latreille, 1808)(Acari: Ixodidae)[J]. Parasitology research, 2009, 105(4): 1093.

47. da Silva Mendes A, Daemon E, de Oliveira Monteiro C M, et al. Acaricidal activity of thymol on larvae and nymphs of Amblyomma cajennense (Acari: Ixodidae)[J]. Veterinary parasitology, 2011, 183(1-2): 136-139.

48. de Oliveira Monteiro C M, Daemon E, Silva A M R, et al. Acaricide and ovicide activities of thymol on engorged females and eggs of Rhipicephalus (Boophilus) microplus (Acari: Ixodidae)[J]. Parasitology research, 2010, 106(3): 615-619.

49. Novato T P L, Arajo L X, de Monteiro C M O, et al. Evaluation of the combined effect of thymol, carvacrol and (E)-cinnamaldehyde on Amblyomma sculptum (Acari: Ixodidae) and Dermacentor nitens (Acari: Ixodidae) larvae[J]. Veterinary parasitology, 2015, 212(3-4): 331-335.

50. Sancheti J, Shaikh M F, Chaudhari R, et al. Characterization of anticonvulsant and antiepileptogenic potential of thymol in various experimental models[J]. Naunyn-Schmiedeberg's archives of pharmacology, 2014, 387(1): 59-66.

51. Garca D A, Bujons J, Vale C, et al. Allosteric positive interaction of thymol with the GABAA receptor in primary cultures of mouse cortical neurons[J]. Neuropharmacology, 2006, 50(1): 25-35.

52. Priestley C M, Williamson E M, Wafford K A, et al. Thymol, a constituent of thyme essential oil, is a positive allosteric modulator of human GABAA receptors and a homo\oligomeric GABA receptor from Drosophila melanogaster[J]. British journal of pharmacology, 2003, 140(8): 1363-1372.

53. Yanishlieva N V, Marinova E M, Gordon M H, et al. Antioxidant activity and mechanism of action of thymol and carvacrol in two lipid systems[J]. Food Chemistry, 1999, 64(1): 59-66.

54. Haeseler G, Maue D, Grosskreutz J, et al. Voltage-dependent block of neuronal and skeletal muscle sodium channels by thymol and menthol[J]. European journal of anaesthesiology, 2002, 19(8): 571-579.

55. da Silveira Novelino A M, Daemon E, Soares G L G. Evaluation of the acaricide effect of thymol, menthol, salicylic acid, and methyl salicylate on Boophilus microplus (Canestrini 1887)(Acari: Ixodidae) larvae[J]. Parasitology research, 2007, 101(3): 809.

56. Ahmad A, Khan A, Akhtar F, et al. Fungicidal activity of thymol and carvacrol by disrupting ergosterol biosynthesis and membrane integrity against Candida[J]. European journal of clinical microbiology & infectious diseases, 2011, 30(1): 41-50.

57. Pina\Vaz C, Gon?alves Rodrigues A, Pinto E, et al. Antifungal activity of Thymus oils and their major compounds[J]. Journal of the European Academy of Dermatology and Venereology, 2004, 18(1): 73-78.

58. Braga P C, Alfieri M, Culici M, et al. Inhibitory activity of thymol against the formation and viability of Candida albicans hyphae[J]. Mycoses, 2007, 50(6): 502-506.

59. Chami N, Bennis S, Chami F, et al. Study of anticandidal activity of carvacrol and eugenol in vitro and in vivo[J]. Oral microbiology and immunology, 2005, 20(2): 106-111.

60. Guo N, Liu J, Wu X, et al. Antifungal activity of thymol against clinical isolates of fluconazole-sensitive and-resistant Candida albicans[J]. Journal of medical microbiology, 2009, 58(8): 1074-1079.

61. Botelho M A, Nogueira N A P, Bastos G M, et al. Antimicrobial activity of the essential oil from Lippia sidoides, carvacrol and thymol against oral pathogens[J]. Brazilian Journal of Medical and Biological Research, 2007, 40(3): 349-356.

62. Vasconcelos L C, Sampaio F C, Albuquerque A J R, et al. Cell viability of Candida albicans against the antifungal activity of thymol[J]. Brazilian dental journal, 2014, 25(4): 277-281.

63. de Castro R D, de Souza T M P A, Bezerra L M D, et al. Antifungal activity and mode of action of thymol and its synergism with nystatin against Candida species involved with infections in the oral cavity: an in vitro study[J]. BMC complementary and alternative medicine, 2015, 15(1): 417.

64. Pauli A. Anticandidal low molecular compounds from higher plants with special reference to compounds from essential oils[J]. Medicinal Research Reviews, 2006, 26(2): 223-268.

65. Bueno-Snchez J G, Martnez-Morales J R, Stashenko E. Actividad antimicobacteriana de terpenos[J]. Revista de la Universidad Industrial de Santander. Salud, 2009, 41(3).

66. WAN, Limei, et al. Preventive and therapeutic effects of thymol in a lipopolysaccharide-induced acute lung injury mice model. Inflammation, 2018, 41.1: 183-192.

67. Wang, Lei, et al. Thymol kills bacteria, reduces biofilm formation, and protects mice against a fatal infection of Actinobacillus pleuropneumoniae strain L20. Veterinary microbiology, 2017, 203: 202-210.

68. Botelho, Marco A., et al. Nanotechnology in phytotherapy: antiinflammatory effect of a nanostructured thymol gel from Lippia sidoides in acute periodontitis in rats. Phytotherapy research, 2016, 30.1: 152-159.

69. Luna, Agustin, et al. Thymol as natural antioxidant additive for poultry feed: oxidative stability improvement. Poultry science, 2017, 96.9: 3214-3220.

70. Manukumar, H. M., S. Umesha, and HN Naveen Kumar. Promising biocidal activity of thymol loaded chitosan silver nanoparticles (TC@ AgNPs) as anti-infective agents against perilous pathogens. International journal of biological macromolecules, 2017, 102: 1257-1265.

71. Villanueva Bermejo, David, et al. Extraction of thymol from different varieties of thyme plants using green solvents. Journal of the Science of Food and Agriculture, 2015, 95.14: 2901-2907.

72. Aboelwafa, Hanaa R., and Hany N. Yousef. The ameliorative effect of thymol against hydrocortisone-induced hepatic oxidative stress injury in adult male rats. Biochemistry and cell biology, 2015, 93.4: 282-289.

73. Wan L, Meng D, Wang H, et al. Preventive and therapeutic effects of thymol in a lipopolysaccharide-induced acute lung injury mice model[J]. Inflammation, 2018, 41(1): 183-192.

74. Zahin M, Ahmad I, Aqil F. Antioxidant and antimutagenic activity of Carum copticum fruit extracts[J]. Toxicology in Vitro, 2010, 24(4): 1243-1249.

75. Shan B, Cai Y Z, Sun M, et al. Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents[J]. Journal of agricultural and food chemistry, 2005, 53(20): 7749-7759.

76. Bera D, Lahiri D, Nag A. Novel natural antioxidant for stabilization of edible oil: the ajowan (Carum copticum) extract case[J]. Journal of the American Oil Chemists' Society, 2004, 81(2): 169-172.

77. Meister A, Bernhardt G, Christoffel V, et al. Antispasmodic activity of Thymus vulgaris extract on the isolated guinea-pig trachea: discrimination between drug and ethanol effects[J]. Planta medica, 1999, 65(06): 512-516.

78. Goudarzi G R, Saharkhiz M J, Sattari M, et al. Antibacterial activity and chemical composition of Ajowan (Carum copticum Benth. & Hook) essential oil[J]. Journal of Agricultural Science and Technology, 2010, 13: 203-208.

79. Braga P C, Dal Sasso M, Culici M, et al. Anti-inflammatory activity of thymol: inhibitory effect on the release of human neutrophil elastase[J]. Pharmacology, 2006, 77(3): 130-136.

80. Archana P R, Rao B N, Ballal M, et al. Thymol, a naturally occurring monocyclic dietary phenolic compound protects Chinese hamster lung fibroblasts from radiation-induced cytotoxicity[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2009, 680(1): 70-77.

81. Shapiro S, Guggenheim B. The action of thymol on oral bacteria[J]. Oral microbiology and immunology, 1995, 10(4): 241-246.

82. Mahmud H, Mauro D, Foeller M, et al. Inhibitory effect of thymol on suicidal erythrocyte death[J]. Cellular Physiology and Biochemistry, 2009, 24(5-6): 407-414.

83. Deb D D, Parimala G, Devi S S, et al. Effect of thymol on peripheral blood mononuclear cell PBMC and acute promyelotic cancer cell line HL-60[J]. Chemico-biological interactions, 2011, 193(1): 97-106.

84. Chavan P S, Tupe S G. Antifungal activity and mechanism of action of carvacrol and thymol against vineyard and wine spoilage yeasts[J]. Food Control, 2014, 46: 115-120.

85. Zhao J, Li Y, Liu Q, et al. Antimicrobial activities of some thymol derivatives from the roots of Inula hupehensis[J]. Food chemistry, 2010, 120(2): 512-516.

86. Marchese A, Orhan I E, Daglia M, et al. Antibacterial and antifungal activities of thymol: a brief review of the literature[J]. Food chemistry, 2016, 210: 402-414.

87. Peixoto\Neves D, Silva\Alves K S, Gomes M D M, et al. Vasorelaxant effects of the monoterpenic phenol isomers, carvacrol and thymol, on rat isolated aorta[J]. Fundamental & clinical pharmacology, 2010, 24(3): 341-350.

88. Rivas L, McDonnell M J, Burgess C M, et al. Inhibition of verocytotoxigenic Escherichia coli in model broth and rumen systems by carvacrol and thymol[J]. International journal of food microbiology, 2010, 139(1-2): 70-78.

89. Shu C, Sun L, Zhang W. Thymol has antifungal activity against Candida albicans during infection and maintains the innate immune response required for function of the p38 MAPK signaling pathway in Caenorhabditis elegans[J]. Immunologic research, 2016, 64(4): 1013-1024.

90. Veras H N H, Rodrigues F F G, Botelho M A, et al. Antimicrobial effect of Lippia sidoides and thymol on Enterococcus faecalis biofilm of the bacterium isolated from root canals[J]. The Scientific World Journal, 2014, 2014.

91. Xu J, Zhou F, Ji B P, et al. The antibacterial mechanism of carvacrol and thymol against Escherichia coli[J]. Letters in applied microbiology, 2008, 47(3): 174-179.

92. Zahran H E D M, Abdelgaleil S A M. Insecticidal and developmental inhibitory properties of monoterpenes on Culex pipiens L.(Diptera: Culicidae)[J]. Journal of Asia-Pacific Entomology, 2011, 14(1): 46-51.

93. Maclagan N F. Thymol turbidity test: a new indicator of liver dysfunction[J]. Nature, 1944, 154(3917): 670.

94. Du E, Gan L, Li Z, et al. In vitro antibacterial activity of thymol and carvacrol and their effects on broiler chickens challenged with Clostridium perfringens[J]. Journal of animal science and biotechnology, 2015, 6(1): 58.

95. Ben Arfa A, Combes S, Preziosi\Belloy L, et al. Antimicrobial activity of carvacrol related to its chemical structure[J]. Letters in applied microbiology, 2006, 43(2): 149-154.

96. Kalemba D, Kunicka A. Antibacterial and antifungal properties of essential oils[J]. Current medicinal chemistry, 2003, 10(10): 813-829.

97. Veldhuizen E J A, Tjeerdsma-van Bokhoven J L M, Zweijtzer C, et al. Structural requirements for the antimicrobial activity of carvacrol[J]. Journal of agricultural and food chemistry, 2006, 54(5): 1874-1879.

98. Scoralik M G, Daemon E, de Oliveira Monteiro C M, et al. Enhancing the acaricide effect of thymol on larvae of the cattle tick Rhipicephalus microplus (Acari: Ixodidae) by solubilization in ethanol[J]. Parasitology research, 2012, 110(2): 645-648.

99. Zsentandrassy N. Effects of thymol on cardiac and skeletal muscle[D]. PhD Thesis]. Debrecen: University of Debrecen, Medical and Health Science Center. Medical School, 2003.

100. Nagle P, Pawar Y, Sonawane A, et al. Docking simulation, synthesis and biological evaluation of novel pyridazinone containing thymol as potential antimicrobial agents[J]. Medicinal Chemistry Research, 2014, 23(2): 918-926.

101. Upadhyay A, Venkitanarayanan K. In vivo efficacy of trans-cinnamaldehyde, carvacrol, and thymol in attenuating Listeria monocytogenes infection in a Galleria mellonella model[J]. Journal of natural medicines, 2016, 70(3): 667-672.

102. Li H, Qin T, Li M, et al. Thymol improves high-fat diet-induced cognitive deficits in mice via ameliorating brain insulin resistance and upregulating NRF2/HO-1 pathway[J]. Metabolic brain disease, 2017, 32(2): 385-393.

103. Park J H, Jeon Y J, Lee C H, et al. Insecticidal toxicities of carvacrol and thymol derived from Thymus vulgaris Lin. against Pochazia shantungensis Chou & Lu., newly recorded pest[J]. Scientific reports, 2017, 7: 40902.

104. Bhaskaran K. Lysis of Vibrio cholerae by Thymol[J]. Nature, 1957, 180(4575): 43.

105. Ashford A, Sharpe C J, Stephens F F. Thymol basic ethers and related compounds: central nervous system depressant action[J]. Nature, 1963, 197(4871): 969.

106. Evans J D, Martin S A. Effects of thymol on ruminal microorganisms[J]. Current Microbiology, 2000, 41(5): 336-340.

107. Chauhan A K, Kang S C. Thymol disrupts the membrane integrity of Salmonella ser. typhimurium in vitro and recovers infected macrophages from oxidative stress in an ex vivo model[J]. Research in microbiology, 2014, 165(7): 559-565.

108. Liang D, Li F, Fu Y, et al. Thymol inhibits LPS-stimulated inflammatory response via down-regulation of NF-B and MAPK signaling pathways in mouse mammary epithelial cells[J]. Inflammation, 2014, 37(1): 214-222.

109. Dhaneshwar S, Patel V, Patil D, et al. Studies on synthesis, stability, release and pharmacodynamic profile of a novel diacerein-thymol prodrug[J]. Bioorganic & medicinal chemistry letters, 2013, 23(1): 55-61.

110. Fachini-Queiroz F C, Kummer R, Estevao-Silva C F, et al. Effects of thymol and carvacrol, constituents of Thymus vulgaris L. essential oil, on the inflammatory response[J]. Evidence-Based Complementary and Alternative Medicine, 2012, 2012.

111. Ocana-Fuentes A, Arranz-Gutierrez E, Senorans F J, et al. Supercritical fluid extraction of oregano (Origanum vulgare) essentials oils: anti-inflammatory properties based on cytokine response on THP-1 macrophages[J]. Food and Chemical Toxicology, 2010, 48(6): 1568-1575.

112. Robledo S, Osorio E, Munoz D, et al. In vitro and in vivo cytotoxicities and antileishmanial activities of thymol and hemisynthetic derivatives[J]. Antimicrobial agents and chemotherapy, 2005, 49(4): 1652-1655.

113. Saravanan S, Pari L. Protective effect of thymol on high fat diet induced diabetic nephropathy in C57BL/6J mice[J]. Chemico-biological interactions, 2016, 245: 1-11.

114. Archana P R, Rao B N, Rao B S S. In vivo radioprotective potential of thymol, a monoterpene phenol derivative of cymene[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2011, 726(2): 136-145.

115. Saravanan S, Pari L. Role of thymol on hyperglycemia and hyperlipidemia in high fat diet-induced type 2 diabetic C57BL/6J mice[J]. European journal of pharmacology, 2015, 761: 279-287.

116. Sarkar P, Bhunia A K, Yao Y. Impact of starch-based emulsions on the antibacterial efficacies of nisin and thymol in cantaloupe juice[J]. Food chemistry, 2017, 217: 155-162.

117. Meeran M F N, Jagadeesh G S, Selvaraj P. Thymol, a dietary monoterpene phenol abrogates mitochondrial dysfunction in -adrenergic agonist induced myocardial infarcted rats by inhibiting oxidative stress[J]. Chemico-biological interactions, 2016, 244: 159-168.

118. Mohammadi A, Mahjoub S, Ghafarzadegan K, et al. Immunomodulatory effects of Thymol through modulation of redox status and trace element content in experimental model of asthma[J]. Biomedicine & Pharmacotherapy, 2018, 105: 856-861.

119. Yousefi M, Hoseini S M, Vatnikov Y A, et al. Thymol as a new anesthetic in common carp (Cyprinus carpio): Efficacy and physiological effects in comparison with eugenol[J]. Aquaculture, 2018.

120. Aanyu M, Betancor M, Monroig O. Effects of dietary limonene and thymol on the growth and nutritional physiology of Nile tilapia (Oreochromis niloticus)[J]. Aquaculture, 2018, 488: 217-226.

121. Baldissera M D, Souza C F, De Matos A F I M, et al. Tissue oxidative damage mediates impairment on phosphotransfer network during thymol intake: Effects on hepatic and renal bioenergetics[J]. Chemico-biological interactions, 2018, 296: 83-88.

122. https://en.wikipedia.org/wiki/Thymol

123. Ribeiro A R S, Diniz P B F, Pinheiro M S, et al. Gastroprotective effects of thymol on acute and chronic ulcers in rats: the role of prostaglandins, ATP-sensitive K+ channels, and gastric mucus secretion[J]. Chemico-biological interactions, 2016, 244: 121-128.