2D Structure

3D Structure

Phenylacetaldehyde


Properties
PID PID00069
Mol. Weight 120.151 g/mol
LogP 1.78
Water solubility 0.0174 mol/L at 20 °C
Hydrogen Bond Donor 0
Hydrogen Bond Acceptor 1
Rotatable Bonds 2
XLogP3 1.8

Phenylacetaldehyde

Identifiers
Formula C8H8O
PubChem CID 998
FEMA 2874
Flavor Profile Berry, Geranium, Honey, Nut, Pungent
Smiles O=CCc1ccccc1
InChl Key DTUQWGWMVIHBKE-UHFFFAOYSA-N
InChl InChI=1S/C8H8O/c9-7-6-8-4-2-1-3-5-8/h1-5,7H,6H2
CAS Registry Number 122-78-1
IUPAC Systematic Name 2-phenylacetaldehyde

Organ Location Map/System Distribution of Pungent Flavor Compounds’ Targets


Note: Known Targets (Gene) from 6952 literatures, DrugBank (http://www.drugbank.ca/), STITCH (http://stitch.embl.de/), ChEMBL (https://www.ebi.ac.uk/chembl/), Therapeutic Target Database (http://bidd.nus.edu.sg/group/ttd/), and Comparative Toxicogenomics Database (CTD, http://ctdbase.org/)


Related Pungent TCM

English Name Pinyin Name (Chinese Name) Latin Name Properties in TCM merdians View Graph
Ardisiae japonicaeAi Di Cha(矮地茶)Japanese Ardisia HerbMild,Pungent,BitterSpleen,HeartView Graph
Artemisia argyiAi Ye(艾叶)Argy Wormwood Leaf Equivalent plant: Artemisia monWarm,Pungent,BitterLung,Spleen,LiverView Graph
Styrax benzoinAn Xi Xiang(安息香)Sumatra Snowbell Equivalent plant: Styrax tonkinenMild,Pungent,BitterSpleen,HeartView Graph
Medicinal IndianmulberryBa Ji Tian(巴戟天)Morindae Officinalis RadixWarm, Pungent, SweetLung, Bladder, HeartView Graph
Rhizoma TyphoniiBai Fu Zi(白附子)rhizome of Giant TyphoniumWarm,Pungent,SweetSpleen,Liver,HeartView Graph
Dahurian AngelicaBai Zhi(白芷)Angelicae Dahuricae RadixWarm, PungentLung, Spleen, StomachView Graph
Barbed SkullcapBan Zhi Lian(半枝莲)Scutellariae Barbatae HerbaCold, Bitter, PungentBladder, Spleen, Liver,StomachView Graph
Chinese Thorowax Equivalent plant: Bupleurum scorzChai Hu(柴胡)Bupleuri RadixMinor cold, Pungent, BitterLiver, Gallbladder, LungView Graph
Dichroa febrifugaChang Shan(常山)Antifebrile DichroaCold,Pungent,BitterLung,Liver,HeartView Graph
Centipeda minimaE Bu Shi Cao(鹅不食草)Small CentipedaWarm,PungentSpleen, Stomach, Kidney, LungView Graph
Chinese Nardostachys Equivalent plant: NardostachyGan Song(甘松)Nardostachyos Radix Et RhizomaWarm, Pungent, SweetLung, Bladder, HeartView Graph
Cassiabarktree TwigGui Zhi (桂枝)Cinnamomi RamulusWarm, Pungent, SweetLung, Bladder, HeartView Graph
SafflowerHong Hua (红花)Carthami FlosWarm,PungentSpleen, Stomach, Kidney, LungView Graph
bark of Officinal magnoliaHou Pu(厚朴)Magnoliae Officinalis CortexWarm, Pungent, BitterSpleen, LiverView Graph
Brassica junceaJie Zi(芥子)India Mustard SeedWarm, PungentLung, Spleen, StomachView Graph
Bush RedpepperLa Jiao (辣椒)Capsici FructusHot, PungentLung, Spleen, Stomach, Heart, KidneyView Graph
Great Burdock FruitNiu Bang Zi(牛蒡子)Arctii FructusCold, Bitter, PungentBladder, Spleen, Liver,StomachView Graph
Bugbane Equivalent plant: Cimicifuga dahurica, CiSheng Ma(升麻)Cimicifugae RhizomaCold, Sweet, PungentLung, Spleen, Large Intestine, StomachView Graph
Lepidium apetalum [Syn. Lepidium micranthum ]Ting Li Zi(葶苈子)Pepperweed Seed Equivalent plant: Descurainia sopExtreme Cold,Pungent,BitterLung,BladderView Graph
Curculigo orchioidesXian Mao(仙茅)Common CruculigoHot,PungentLarge Intestine, StomachView Graph
Paniculate SwallowwortXu Chang Qing(徐长卿)Cynanchi Paniculati Radix Et RhizomaWarm, PungentLung, Spleen, StomachView Graph
Tokyo VioletZi Hua Di Ding (紫花地丁)Peucedani Decursivi RadixCold, Pungent, BitterLiver, Heart, LungView Graph
Chuanxiong (Wallich Ligusticum) Equivalent plantChuan Xiong (川芎)Ligusticum chuanxiong HortWarm, PungentLung, Spleen, StomachView Graph

Pharmacological action

Phenylacetaldehyde is an organic compound used in the synthesis of fragrances and polymers. Phenylacetaldehyde is responsible for the antibiotic activity of

maggot therapy.

phenylacetaldehyde are aromatic compounds found in a diverse range of fruit and other plant tissues.

Phenylacetaldehyde, a compound present in tomato fruit (14), is derived from phenylalanine by decarboxylation and oxidative removal of the amino group.

The gas phase isomerization of styrene oxide (STO) into phenylacetaldehyde (PhAD) in good yield and selectivity has been achieved using a steel tube

reactor as catalyst in an efficient and environmentally friendly process.

The aroma of pure substance can be described as honey-like, sweet, rose, green, grassy and is added to fragrances to impart hyacinth, narcissi, or rose

nuances.For similar reasons the compound can sometimes be found in flavored cigarettes and beverages.

Historically, before biotechnology approaches were developed, phenylacetaldehyde was also used to produce phenylalanine via the Strecker reaction as a step

in the production of aspartame sweetener.[1]



Note: Click anywhere in the blank, you can drag the whole dynamic diagram. Click on a node, you can drag his location to see it more clearly. The blue circle represents pharmacology, toxicology, or daily use. Orange hexagon represents the pungent compounds.

References

1. https://en.wikipedia.org/wiki/Phenylacetaldehyde

2. Kamimura, N., Goto, T., Takahashi, K., Kasai, D., Otsuka, Y., Nakamura, M., Masai, E A bacterial aromatic aldehyde dehydrogenase critical for the efficient catabolism of syringaldehyde[J]. Scientific Reports, 2017, 7: 44422.

3. Grosjean, Y., Rytz, R., Farine, J. P., Abuin, L., Cortot, J., Jefferis, G. S., Benton, R. An olfactory receptor for food-derived odours promotes male courtship in Drosophila[J]. Nature, 2011, 478(7368): 236.

4. Wightman F, Lighty D L. Identification of phenylacetic acid as a natural auxin in the shoots of higher plants[J]. Physiologia Plantarum, 1982, 55(1): 17-24.

5. Culler, L., Escudero, A., Cacho, J., Ferreira, V. Gas chromatography? olfactometry and chemical quantitative study of the aroma of six premium quality Spanish aged red wines[J]. Journal of Agricultural and Food Chemistry, 2004, 52(6): 1653-1660.

6. Tadmor, Y., Fridman, E., Gur, A., Larkov, O., Lastochkin, E., Ravid, U., Lewinsohn, E. Identification of malodorous, a wild species allele affecting tomato aroma that was selected against during domestication[J]. Journal of Agricultural and Food Chemistry, 2002, 50(7): 2005-2009.

7. Hayashi, S., Yagi, K., Ishikawa, T., Kawasaki, M., Asai, T., Picone, J., Ogawa, K. Emission of 2-phenylethanol from its -D-glucopyranoside and the biogenesis of these compounds from [2H8] L-phenylalanine in rose flowers[J]. Tetrahedron, 2004, 60(33): 7005-7013.

8. Hayashi, S., Yagi, K., Ishikawa, T., Kawasaki, M., Asai, T., Picone, J., Ogawa, K Emission of 2-phenylethanol from its -D-glucopyranoside and the biogenesis of these compounds from [2H8] L-phenylalanine in rose flowers[J]. Tetrahedron, 2004, 60(33): 7005-7013.

9. Pichersky E, Noel J P, Dudareva N. Biosynthesis of plant volatiles: nature's diversity and ingenuity[J]. Science, 2006, 311(5762): 808-811.

10. Cicconardi, F., Di Marino, D., Olimpieri, P. P., Arthofer, W., Schlick-Steiner, B. C., Steiner, F. M. Chemosensory adaptations of the mountain fly Drosophila nigrosparsa (Insecta: Diptera) through genomics and structural biologys lenses[J]. Scientific reports, 2017, 7: 43770.

11. Koh, E. I., Robinson, A. E., Bandara, N., Rogers, B. E., Henderson, J. P. Copper import in Escherichia coli by the yersiniabactin metallophore system[J]. Nature chemical biology, 2017, 13(9): 1016.

12. Widhalm, J. R., Gutensohn, M., Yoo, H., Adebesin, F., Qian, Y., Guo, L., Thimmapuram, J. Identification of a plastidial phenylalanine exporter that influences flux distribution through the phenylalanine biosynthetic network[J]. Nature communications, 2015, 6: 8142.

13. Widhalm J R, Gutensohn M, Yoo H, et al. Identification of a plastidial phenylalanine exporter that influences flux distribution through the phenylalanine biosynthetic network[J]. Nature communications, 2015, 6: 8142.

14. Spehr, M., Gisselmann, G., Poplawski, A., Riffell, J. A., Wetzel, C. H., Zimmer, R. K., Hatt, H. Identification of a testicular odorant receptor mediating human sperm chemotaxis[J]. Science, 2003, 299(5615): 2054-2058.

15. Kaminaga, Y., Schnepp, J., Peel, G., Kish, C. M., Ben-Nissan, G., Weiss, D., Porterfield, D. M. Plant phenylacetaldehyde synthase is a bifunctional homotetrameric enzyme that catalyzes phenylalanine decarboxylation and oxidation[J]. Journal of Biological Chemistry, 2006, 281(33): 23357-23366.

16. Payne, K. A., White, M. D., Fisher, K., Khara, B., Bailey, S. S., Parker, D., Barran, P. New cofactor supports , -unsaturated acid decarboxylation via 1, 3-dipolar cycloaddition[J]. Nature, 2015, 522(7557): 497.

17. Frost J R, Scully C C G, Yudin A K. Oxadiazole grafts in peptide macrocycles[J]. Nature Chemistry, 2016, 8(12): 1105-1111.

18. Goff S A, Klee H J. Plant volatile compounds: sensory cues for health and nutritional value?[J]. Science, 2006, 311(5762): 815-819.

19. Dong, G., Teo, P., Wickens, Z. K., Grubbs, R. H. Primary alcohols from terminal olefins: formal anti-Markovnikov hydration via triple relay catalysis[J]. Science, 2011, 333(6049): 1609-1612.

20. Terfassa, B., Nongwe, I., Ravat, V., Coville, N. J.. Selective gas phase isomerization of styrene oxide to phenylacetaldehyde in a steel tube reactor[J]. Reaction Kinetics, Mechanisms and Catalysis, 2017, 120(2): 543-554.

21. Folta K M, Klee H J. Sensory sacrifices when we mass-produce mass produce[J]. Horticulture research, 2016, 3: 16032.

22. Farhan, A., Gulati, J., Groe-Wilde, E., Vogel, H., Hansson, B. S., Knaden, M. The CCHamide 1 receptor modulates sensory perception and olfactory behavior in starved Drosophila[J]. Scientific reports, 2013, 3: 2765.

23. Mayuoni\Kirshinbaum L, Porat R. The flavor of pomegranate fruit: a review[J]. Journal of the Science of Food and Agriculture, 2014, 94(1): 21-27.

24. Harry J. Klee; Denise M. Tieman. The genetics of fruit flavour preferences.Nature Reviews Genetics. 2018,19(6):347.

25. Lin, Y., Qasim, M., Hussain, M., Akutse, K. S., Avery, P. B., Dash, C. K., Wang, L. The herbivore-induced plant volatiles methyl salicylate and menthol positively affect growth and pathogenicity of entomopathogenic fungi[J]. Scientific reports, 2017, 7: 40494.

26. Lin, Y., Hussain, M., Avery, P. B., Qasim, M., Fang, D., Wang, L. Volatiles from plants induced by multiple aphid attacks promote conidial performance of Lecanicillium lecanii[J]. PloS one, 2016, 11(3): e0151844.

27. Lin, Y., Qasim, M., Hussain, M., Akutse, K. S., Avery, P. B., Dash, C. K., Wang, L. The herbivore-induced plant volatiles methyl salicylate and menthol positively affect growth and pathogenicity of entomopathogenic fungi[J]. Scientific reports, 2017, 7: 40494.

28. Kaminaga, Y., Schnepp, J., Peel, G., Kish, C. M., Ben-Nissan, G., Weiss, D., Porterfield, D. M. Plant phenylacetaldehyde synthase is a bifunctional homotetrameric enzyme that catalyzes phenylalanine decarboxylation and oxidation[J]. Journal of Biological Chemistry, 2006, 281(33): 23357-23366.

29. Tieman, D. M., Loucas, H. M., Kim, J. Y., Clark, D. G., Klee, H. J. Tomato phenylacetaldehyde reductases catalyze the last step in the synthesis of the aroma volatile 2-phenylethanol[J]. Phytochemistry, 2007, 68(21): 2660-2669.

30. Cai, Jing, Pengjuan Zu, and Florian P. Schiestl. The molecular bases of floral scent evolution under artificial selection: insights from a transcriptome analysis in Brassica rapa. Scientific reports 6 (2016): 36966.

31. Wilmot, C. M., Hajdu, J., McPherson, M. J., Knowles, P. F., & Phillips, S. E. V. Visualization of dioxygen bound to copper during enzyme catalysis. Science 286.5445 (1999): 1724-1728.

32. Pavillard, E. R., and E. A. Wright. An antibiotic from maggots. Nature 180.4592 (1957): 916.