2D Structure

3D Structure

β-Pinene


Properties
PID PID00056
Mol. Weight 136.238 g/mol
LogP 4.16
Water solubility In water, 4.89 mg/L at 25 °C (est)
Hydrogen Bond Donor 0
Hydrogen Bond Acceptor 0
Rotatable Bonds 0
XLogP3-AA 3.1

β-Pinene

Identifiers
Formula C10H16
PubChem CID 14896
FEMA 2903
Flavor Profile Pine, Polish, Wood; Characteristic Turpentine Odor; Dry, Woody Or Resinous Aroma, Piney, Turpentine-Like Odor, Terpene Odor; Piney, Turpentine-Like Taste
Smiles C=C1CCC2CC1C2(C)C
InChl Key WTARULDDTDQWMU-UHFFFAOYSA-N
InChl InChI=1S/C10H16/c1-7-4-5-8-6-9(7)10(8,2)3/h8-9H,1,4-6H2,2-3H3
CAS Registry Number 127-91-3, 25719-60-2
IUPAC Systematic Name 6,6-dimethyl-4-methylidenebicyclo[3.1.1]heptane

Organ Location Map/System Distribution of Pungent Flavor Compounds’ Targets


Note: Known Targets (Gene) from 6952 literatures, DrugBank (http://www.drugbank.ca/), STITCH (http://stitch.embl.de/), ChEMBL (https://www.ebi.ac.uk/chembl/), Therapeutic Target Database (http://bidd.nus.edu.sg/group/ttd/), and Comparative Toxicogenomics Database (CTD, http://ctdbase.org/)


Related Pungent TCM

English Name Pinyin Name (Chinese Name) Latin Name Properties in TCM merdians View Graph
Clove TreeDing Xiang (丁香)Caryophylli FlosWarm,PungentSpleen, Stomach, Kidney, LungView Graph
Chinese Nardostachys Equivalent plant: NardostachyGan Song(甘松)Nardostachyos Radix Et RhizomaWarm, Pungent, SweetLung, Bladder, HeartView Graph
Fresh Common GingerSheng Jiang (生姜)Zingiber Rhizoma RecensWarm, PungentLung, Spleen, StomachView Graph
Dahurian AngelicaBai Zhi(白芷)Angelicae Dahuricae RadixWarm, PungentLung, Spleen, StomachView Graph
Illicium difengpiDi Feng Pi(地枫皮)Difengpi Anisetree Equivalent plant: Illicium majuWarm,Slightly Pungent,PunkeryBladder,KidneyView Graph
Common NutmegRou Dou Kou(肉豆蔻)Myristicae SemenWarm, PungentLung, Spleen, StomachView Graph
Divaricate SaposhnikoviaFang Feng (防风)Saposhnikoviae RadixWarm, Pungent, SweetLung, Bladder, HeartView Graph
Fructus GalangaeHong Dou Kou(红豆蔻 )Galanga Galangal FruitWarm,PungentSpleen, Stomach, Kidney, LungView Graph
Bunge Pricklyash Equivalent plant: Zanthoxylum schHua Jiao (花椒)Zanthoxyli PericarpiumWarm,PungentSpleen, Stomach, Kidney, LungView Graph
Oriental Sweetgum ResinSu He Xiang (苏合香)StyraxWarm, PungentLung, Spleen, StomachView Graph
Round Cardamon FruitDou Kou (豆蔻)Amomi Fructus RotundusWarm, Pungent,Spleen, Lung, StomachView Graph
Lily Magnolia Buds Equivalent plant: Magnolia liliXin Yi (辛夷)Magnoliae FlosWarm, PungentLung, Spleen, StomachView Graph
Fortune Eupatorium Equivalent plant: Eupatorium fPei Lan(佩兰)Eupatorii HerbaNeural, PungentLung,Spleen,StomachView Graph
Apple MintYu Xian Cao(鱼腥草)Houttuyniae HerbaCold, PungentLungView Graph
Siebold Wildginger Equivalent plant: Asarum heteroXi Xin (细辛)Asari Radix Et RhizomaWarm, PungentLung, Spleen, StomachView Graph
Fineleaf SchizonepetaJing Jie (荆芥)Schizonepetae HerbaMinor Warm, PungentLung, LiverView Graph
Villous Amomum Equivalent plant: Amomum xanthioideSha Ren (砂仁)Amomi FructusWarm, PungentLung, Spleen, StomachView Graph
Haichow ElsholtziaXiang Ru (香薷)Moslae HerbaMinor Warm,PungentLung, Spleen, StomachView Graph
Wild MintBo He (薄荷)Menthae Haplocalycis HerbaCool, PungentLiver, LungView Graph
Wilson CitronXiang Yuan(香橼)Citri FructusWarm, Pungent, Sour, Slightly BitterLung, Spleen, LiverView Graph
Wilson CitronXiang Yuan(香橼)Citri FructusWarm, Pungent, Sour, Slightly BitterLung, Spleen, LiverView Graph

Pharmacological action

Beta-pinene) is a monoterpene, an organic compound found in plants. It is one of the two isomers of pinene, the other being -pinene. It is colorless liquid soluble in alcohol, but not water. It has a woody-green pine-like smell.

Beta-Pinene is a colorless liquid, soluble in oils and insoluble in water and ethanol, with a boiling point between 163 and 166 C. Beta-Pinene is an important intermediate in the production of citral, citronellol, geraniol, citronellal, linalool, ionones, and menthol, being mainly applied in bakery products, candy, and chilled dairy products.

Beta-Pinene represent 75 to 90% of essential oils from conifers and can be found in concentrations in the range from 15 to 30%, respectively, in turpentine, a byproduct of the paper and cellulose industry.

Beta-Pinene is usually found in lower percentages than is -pinene in several essential oils, and this fact might corroborate the fact that few studies explore their biological activities.

Beta-pinene is a common constituent of several essential plant oils.



Note: Click anywhere in the blank, you can drag the whole dynamic diagram. Click on a node, you can drag his location to see it more clearly. The blue circle represents pharmacology, toxicology, or daily use. Orange hexagon represents the pungent compounds.

References

1. Guzmn-Gutirrez S L, Gmez-Cansino R, Garca-Zebada J C, et al. Antidepressant activity of Litsea glaucescens essential oil: identification of -pinene and linalool as active principles[J]. Journal of ethnopharmacology, 2012, 143(2): 673-679.

2. van der Werf M J, de Bont J A M, Leak D J. Opportunities in microbial biotransformation of monoterpenes[M]//Biotechnology of aroma compounds. Springer, Berlin, Heidelberg, 1997: 147-177.

3. Leite, A. M., Lima, E. D. O., Souza, E. L. D., Diniz, M. D. F. F. M., Trajano, V. N., & Medeiros, I. A. D. Inhibitory effect of beta-pinene, alpha-pinene and eugenol on the growth of potential infectious endocarditis causing Gram-positive bacteria[J]. Revista Brasileira de Cincias Farmacuticas, 2007, 43(1): 121-126.

4. Guzmn-Gutirrez, S. L., Bonilla-Jaime, H., Gmez-Cansino, R., Reyes-Chilpa, R. Linalool and -pinene exert their antidepressant-like activity through the monoaminergic pathway[J]. Life sciences, 2015, 128: 24-29.

5. Guzmn-Gutirrez, S. L., Gmez-Cansino, R., Garca-Zebada, J. C., Jimnez-Prez, N. C., & Reyes-Chilpa, R. Antidepressant activity of Litsea glaucescens essential oil: identification of -pinene and linalool as active principles[J]. Journal of ethnopharmacology, 2012, 143(2): 673-679.

6. Belletti, N., Kamdem, S. S., Tabanelli, G., Lanciotti, R., Gardini, F. Modeling of combined effects of citral, linalool and -pinene used against Saccharomyces cerevisiae in citrus-based beverages subjected to a mild heat treatment[J]. International Journal of Food Microbiology, 2010, 136(3): 283-289.

7. https://en.wikipedia.org/wiki/Beta-Pinene

8. Guzmn-Gutirrez S L, Bonilla-Jaime H, Gmez-Cansino R, et al. Linalool and -pinene exert their antidepressant-like activity through the monoaminergic pathway[J]. Life sciences, 2015, 128: 24-29.

9. Silva, A. C. R. D., Lopes, P. M., Azevedo, M. M. B. D., Costa, D. C. M., Alviano, C. S., & Alviano, D. S. Biological activities of a-pinene and -pinene enantiomers[J]. Molecules, 2012, 17(6): 6305-6316.

10. Vespermann, K. A., Paulino, B. N., Barcelos, M. C., Pess?a, M. G., Pastore, G. M., & Molina, G. Biotransformation of -and -pinene into flavor compounds[J]. Applied microbiology and biotechnology, 2017, 101(5): 1805-1817.

11. Yocca F D. Neurochemistry and neurophysiology of buspirone and gepirone: interactions at presynaptic and postsynaptic 5-HT1A receptors[J]. Journal of clinical psychopharmacology, 1990, 10(3 Suppl): 6S-12S.

12. Belletti, N., Ndagijimana, M., Sisto, C., Guerzoni, M. E., Lanciotti, R., & Gardini, F. Evaluation of the antimicrobial activity of citrus essences on Saccharomyces cerevisiae[J]. Journal of Agricultural and Food Chemistry, 2004, 52(23): 6932-6938.

13. Burt S. Essential oils: their antibacterial properties and potential applications in foodsa review[J]. International journal of food microbiology, 2004, 94(3): 223-253.

14. Canillac N, Mourey A. Antibacterial activity of the essential oil of Picea excelsa on Listeria, Staphylococcus aureus and coliform bacteria[J]. Food Microbiology, 2001, 18(3): 261-268.

15. Bates T H, Best J V F, Williams T F. RADIATION-INDUCED IONIC REACTIONS: THE RETARDATION OF THE HOMOPOLYMERIZATIONS OF $ alpha $-METHYL STYRENE AND $ beta $-PINENE BY WATER[J]. Nature, 1960, 188.

16. Bates T H, Williams T F. Radiolysis of Terpene Hydrocarbons: Isomerization and Polymerization of -and -Pinene[J]. Nature, 1960, 187(4738): 665.

17. Chowhan, N., Bali, A. S., Singh, H. P., Batish, D. R., & Kohli, R. K. Reactive oxygen species generation and antioxidant defense system in hydroponically grown wheat (Triticum aestivum) upon -pinene exposure: an early time course assessment[J]. Acta physiologiae plantarum, 2014, 36(12): 3137-3146.